\(4^{11}.25^{11}<2x.5^x<20^{12}.5^{12}\)\(\Leftrightarrow x=23\)
\(4^{11}.25^{11}<2^x.5^x<20^{12}.5^{12}\)
=> \(\left(4.25\right)^{11}< \left(2.5\right)^x<\left(20.5\right)^{12}\)
=> \(100^{11}<10^x<100^{12}\)
=> \(10^{22}<10^x<10^{24}\)
=> 22 < x < 24
=> x = 23.
\(4^{11}.25^{11}<2^x.5^x<20^{12}.5^{12}\)
\(\Rightarrow100^{11}<10^x<100^{12}\)
\(\Rightarrow10^{22}<10^x<10^{24}\)
\(\Rightarrow x=23\)