\(3^x+3^x.3=324\)
\(3^x.\left(1+3\right)=324\)
\(3^x.4=324\)
\(3^x=324:4\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
3x + 3x+1 = 324
3x .1+ 3x.3 = 324
3x.(1+3) = 324
3x .4 = 324
3x = 324:4
3x = 81
81=3 .3.3.3 =34 => 81 =34=> x =4
Vậy x=4
ta co :3^x+3x+1=324
=>3^x+3x.3=324
=>3^x.(1+3)=324
=>3^x=324/4=81=3^4
=>x=4
vay x=4