Ta có: \(3^{x+3}\cdot3^{2x-1}+3^{2x}\cdot3^{x+1}=324\)
\(\Leftrightarrow3^{3x+2}+3^{3x+1}=324\)
\(\Leftrightarrow3^{3x+1}\cdot\left(3+1\right)=324\)
\(\Leftrightarrow3^{3x+1}\cdot4=324\)
\(\Leftrightarrow3^{3x+1}=81=3^4\)
\(\Rightarrow3x+1=4\)
\(\Leftrightarrow x=1\)
\(3^{x+3}\cdot3^{2x-1}+3^{2x}\cdot3^{x+1}=324\)
\(3^{x+3+2x-1}+3^{2x+x+1}=324\)
\(3^{3x+2}+3^{3x+1}=324\)
\(3^{3x+1}\cdot\left(3+1\right)=324\)
\(3^{3x+1}\cdot4=324\)
\(3^{3x+1}=324:4\)
\(3^{3x+1}=81\)
\(3^{3x+1}=3^4\)
\(\Rightarrow3x+1=4\)
\(3x=4-1\)
\(3x=3\)
\(x=3:3\)
\(x=1\)