Chứng minh hả ? -.-
( 3a + 2b - 1 )( a + 5 ) - 2b( a - 2 ) = ( 3a + 5 )( a + 3 ) + 2( 7b - 10 )
<=> 3a2 + 15a + 2ab + 10b - a - 5 - 2ab + 4b = 3a2 + 14a + 15 + 14b - 10
<=> 3a2 + 14a + 14b - 5 = 3a2 + 14a + 14b - 5
=> đpcm
Chứng minh hả ? -.-
( 3a + 2b - 1 )( a + 5 ) - 2b( a - 2 ) = ( 3a + 5 )( a + 3 ) + 2( 7b - 10 )
<=> 3a2 + 15a + 2ab + 10b - a - 5 - 2ab + 4b = 3a2 + 14a + 15 + 14b - 10
<=> 3a2 + 14a + 14b - 5 = 3a2 + 14a + 14b - 5
=> đpcm
Bài 1: Chứng minh:
a, ( a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)=a\(^3\)+b\(^3\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
Bài 2: Chứng minh
a, (a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)= a\(^3\)+b\(^{^{ }3}\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
Tính:
a, (3a^2-1/2)^3+(a^3+1/4)^2-(a+1)^3
b,(1/3a^2-1/2b).(1/3a^2-1/2b)-(a+1/2b)-(a+1/2b).(a^2-1/2ab)+1/4b^2
Cho a^3 -3ab^2 = 10 và b^3 - 3a^2b = 5. Tính: a^2 + b^2
tính (3a+2b-1)(a+5)-2b(a-2)
cho a^3-3ab^2=5 và b^3-3a^2b=10
Tính S=a^2+b^2
co a^3 -3ab^2=5 va b^3-3a^2b=10
Tinh S=a^2 +b^2
Cho a - b = 10 . Tính:
A = ( 2a - 3b )2 +2( 2a - 3b )( 3a - 2b ) + ( 2b - 3a )2
Phân tích thành nhân tử:
2(a-2b)+3a(2b-a)
a(m-n)-5(n-m)