Chứng minh rằng :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\) \(\frac{31}{15^2.16^2}< 1\)
Chứng minh rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2
CMR : 3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 19/9^2.10^2 < 1
chứng minh rằng 3/1^2.2+5/2^2.3^2+7/3^2.4^2+...+2013/1006^2.1007^2<1
c/minh: A=3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+.......+4031/2015^2.2016^2<1
3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 +...+ 19/9^2.10^2. chung minh nho hon 1
Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
chứng minh rằng
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
chứng tỏ rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/ 2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2