Giải phương trình :
a) \(2x^3-x^2y-3x^2+14x-7y-5=0\)
b) \(x^2y^2\left(x+y\right)+x+y=5+xy\)
Tìm nghiệm nguyên dương của:
(x + 2y)(3x + 7y)=216
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
Tìm nghiệm nguyên của phương trình:
x^4 -2y^4 - x^2.y^2 - 4x^2 - 7y^2 - 5 =0
Giải các phương trình sau :
a, \(3x^2+4x+10=2\sqrt{14x^2-7}\)
b, \(\sqrt[4]{4-x^2}-\sqrt[4]{x^4-16}+\sqrt{4x+1}+\sqrt{x^2+y^2-2y-3}=5-y\)
c, \(x^4-2y^4-x^2y^2-4x^2-7y^2-5=0\)với x, y nguyên
làm ơn giúp mình với ạ , câu nào cũng được
1) 8y^2-25=3xy+5x
2)xy-2y-3=3x-x^2
3)x^2+2y^2-3xy_4x-3y-26=0
4)x^2+3y^2+2xy-2x-4y-3=0
5)x^3+3x=y^3
6)x^4-2x^2y+7y^2=55
7)x^2y^2-2xy=x^2+16y^2
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Tìm nghiệm nguyên dương của PT: 2x-7y=5