\(2^x+2^x\cdot2^2+2^x\cdot2^4=336\)
\(\Leftrightarrow2^x\left(1+2^2+2^4\right)=336\)
\(\Leftrightarrow2^x\cdot21=336\)
\(\Leftrightarrow2^x=336:21=16\)
\(16=2^4\Rightarrow x=4\)
\(\Rightarrow2^x.\left(1+2^2+2^4\right)=336\)
\(\Rightarrow2^x.\left(1+4+16\right)=336\)
\(\Rightarrow2^x.21=336\)
\(\Rightarrow2^x=336:21\)
\(\Rightarrow2^x=16=2^4\)
Vậy x=4.
2^x+2^x+2 +2^x+4=336
=>2^x+2^x.2^2+2^x.2^4=336
=>2^x(1+2^2+2^4)=336
=>2^x .21=336
=>2^x=336:21=16
=>2^x=2^4=>x=4
\(2^x+2^{x+2}+2^{x+4}=336\)
\(2^x\left(1+2^2+2^4\right)=336\)
\(2^x\times21=336\)
\(2^x=336\div21\)
\(2^x=16\)
\(2^x=2^4\)
\(\Rightarrow x=4\)