Gỉai các phương trình sau
a) 5/-x^2+5x-6 + x+3/2-x = 0
b) x/2x+2 - 2x/x^2-2x-3 = x/6-2x
c) 1/x-1 - 3x^2/x^3-1 = 2x/x^2+x+1
d) x+25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10x
Giải phương trình:
\(x^4-5x^3-10x^2-10x+4=0\)
\(x^4+2x^3-3x^2-2x+1=0\)
a) 16x^2-8x+1=0
b) 6x^2-10x-1=0
c) 3x^2+2x+5=0
Giải các phương trình sau:
a) \(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
b) \(2x^4-5x^3-9x^2+11x+4=0\)
c) \(8x^3+4x^2+2x-3=0\)
d) \(\frac{10x^4}{\left(1+x^2\right)^2}-\frac{3x^2}{1+x^2}-1=0\)
e) \(3x^4+4x^3-27x^2+8x+12=0\)
\(\sqrt{10x+1}+\sqrt{3x+5}=\sqrt{9x+4}+\sqrt{2x-2}\)
\(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}-\sqrt{x^2-3x+4}\)
\(\frac{x^2}{\left(1+\sqrt{x+1}\right)^2}>x-4\)
\(a,3x^3+6x^2-4x=0\)
\(b,\left(x+1\right)^3-x+1=\left(x-1\right)\left(x-2\right)\)
\(c,\left(x^2+x+1\right)^2=\left(4x-1\right)^2\)
\(d,\left(2x^2+3\right)^2-10x^3-15x=0\)
\(10x^2+3x-6=2\left(3x+1\right)\sqrt{2x^2-1}\)
1) |2x - 1| = 5
2) |2x - 1| = |x + 5|
3) |3x + 1| = x - 2
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)