2x+3=8
2x=5
x=5/2
2y+5=19
2y=14
y=14/2=7
2z+8=26
2z=18
z=18/2=9
vậy x+y+z=5/2+7+9=18.5
2x + 3 = 8
=>x =5 :2 =2.25
2y + 5 = 19
=> y =7
2z +8 =26
=> z=9
=) x+ y + z=2,25 +7 + 9=19,25
2x+3=8
2x=5
x=5/2
2y+5=19
2y=14
y=14/2=7
2z+8=26
2z=18
z=18/2=9
vậy x+y+z=5/2+7+9=18.5
2x + 3 = 8
=>x =5 :2 =2.25
2y + 5 = 19
=> y =7
2z +8 =26
=> z=9
=) x+ y + z=2,25 +7 + 9=19,25
tìm x,y,z biết :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
B1:Tìm x,biết:
x-1000/24+x-998/26+x-996/28=3
B2:Tìm x,y và z
a)xy=-3/5;yz=-4/5;zx=3/4
b)x(x+y+z)=-12
-y(-y-z-x)=18
z(y+z+x)=30
c)xy=z;yz=4x;zx=9y
[TEX]\frac{x}{2} = \frac{y}{3} <=> \frac{x}{8} = \frac{y}{12}[/TEX]
[TEX]\frac{y}{4} = \frac{z}{5} <=> \frac{y}{12} = \frac{z}{15}[/TEX]
Suy ra:
[TEX]\frac{x}{8} = \frac{y}{12} = \frac{z}{15} [/TEX]
Mặt khác: [TEX]x+y+z=10 [/TEX]
Áp dụng tính chấmơẻ rộng của dãy tỉ số bằng nhau:
[TEX]\frac{x+y+z}{8+12+15} = \frac{10}{35} = \frac{2}{7} [/TEX]
[TEX]x= \frac{16}{7}[/TEX]
[TEX]y= \frac{24}{7}[/TEX]
[TEX]z= \frac{30}{7}[/TEX]
tim so tu nhien x y sao cho (x-2).(2y+3)=26tim so tu nhien x y sao cho (x-2).(2y+3)=26
@Ai đó:v
Tìm min của 2x^2 + y^2 +z^2 biết xy + yz + zx = 1 và x, y, z > 0
Cách của em như sau(ko chắc đâu nhé, cách này em mới nghĩ ra thôi): Ta cho k >0thỏa mãn \(A\ge k\left(xy+yz+zx\right)\)
Hay
\(2x^2-x\left(ky+kz\right)+y^2-kyz+z^2\ge0\)
Có:\(VT=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)y^2-\left(2k^2+8k\right)yz+\left(8-k^2\right)z^2}{8}\)
\(=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)\left(y-\frac{\left(2k^2+8z\right)z}{2\left(8-k^2\right)}\right)^2+\frac{z^2}{4}\left[4\left(8-k^2\right)-\frac{\left(2k^2+8k\right)^2}{8-k^2}\right]}{8}\)
Bây giờ để bđt là luôn đúng thì \(8-k^2\ge0\) và \(4\left(8-k^2\right)=\frac{\left(2k^2+8k\right)^2}{8-k^2}\)
Ngay lập tức ta thấy \(k=\sqrt{5}-1\)
Từ đó..
BT hè vui :PP
1 ) Cho 3 số dương x, y, z có tổng bằng 1.Chứng minh rằng
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>14\)
2 ) Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z=3\).Chứng minh rằng
\(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\ge\frac{1}{9}+\frac{2}{27}\left(xy+yz+xz\right)\)
Cho a,b,c>0; a+b+c=3/4. Tìm min
\(M=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
Bài 1: tìm cặp số \(\left(x,y\right)\)thỏa mãn:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a+b+c\ne0\);\(a=2017\).tính \(b,c\)
Bài 3: a) tìm x,y,z biết \(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
c) tìm x,y biết \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
d) tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)