Chứng minh rằng:a) A1/2+2/2^2+3/2^3+4/4^4+...+100/3^1002b) B1/3+2/3^2+3/3^3+...+100/3^1003/4c) C1/2^3+1/3^3+1/4^3+...+1/n^31/4 (n thuộc N; n hoặc 2)d) D1/3^3+1/4^3+1/5^3+...+1/n^31/12 (n thuộc N; n hoặc 3)e) E2/1*4/3*6/5*...*200/19920f) F3/4+5/56+7/144+...+2n+1/n^2+(n+1)^2 ( n nguyên dương)g) G1/2*(1/6+1/24+1/60+...+1/9240)57/62h) H1/31+1/32+1/33+...+1/20483i) I(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)2/5j) J1/2!+2/3!+3/4!+...+n-1/n!2k) K1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!2 (n nguyên dương)l) 1/6L1...
Đọc tiếp
Chứng minh rằng:
a) A=1/2+2/2^2+3/2^3+4/4^4+...+100/3^100<2
b) B=1/3+2/3^2+3/3^3+...+100/3^100<3/4
c) C=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n thuộc N; n> hoặc = 2)
d) D=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n thuộc N; n> hoặc =3)
e) E=2/1*4/3*6/5*...*200/199<20
f) F=3/4+5/56+7/144+...+2n+1/n^2+(n+1)^2 ( n nguyên dương)
g) G=1/2*(1/6+1/24+1/60+...+1/9240)>57/62
h) H=1/31+1/32+1/33+...+1/2048>3
i) I=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
j) J=1/2!+2/3!+3/4!+...+n-1/n!<2
k) K=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2 (n nguyên dương)
l) 1/6<L=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4