\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2015}{2015}-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
\(\text{Ta có: }\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{2013.2015}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
\(\text{Ta có : }\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2013.2015}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)