tồn tại hay ko số nguyên x;y thỏa mãn : \(2016x^{2017}+2017y^{2018}=2019\)
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
cho x,y,z >0 thỏa mãn \(x^3+y^3+z^3=3xyz\)
tính \(P=\frac{\left(x-y\right)^{2017}}{x+y}+\frac{\left(y-z\right)^{2018}}{y+z}+\frac{\left(z-x\right)^{2019}}{x+z}\)
giải phương trình nghiệm nguyên
2016x ^ 2017 + 2017y ^ 2016 = 2015.
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)
Cho 2 số dương x,y thỏa mãn: \(xy\ge2016x+2017y\)
Chứng minh rằng : \(x+y\ge\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Cảm ơn ạ!
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
1.Giải hệ phương trình
\(\hept{\begin{cases}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+17y}\end{cases}}\)
2.Cho P(x) là đa thức bậc 3 có hệ số bậc cao nhất là 1 và thảo mãn:
P(2016)=2017;P(2017)=2018.Tính:-3P(2018)+P(2019)
3.Cho x,y,z\(\ge1\)thỏa mãn:\(3x^2+4y^2+5Z^2=32\)
Tìm min:x+y+z
cho x; y thỏa mãn điều kiện \(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\)
Tính giá trị biểu thức: \(S=\left(x-17\right)^{2018}+\left(y-19\right)^{2019}\)