2014+(2014/1+2)+(2014/1+2+3)+...+(2014/1+2+3+...+2013)
=2014*(1+(1/1+2)+(1/1+2+3)+...+( 1/1+2+3+...+2013))
=2014*(1+(1/3)+(1/6)+....+(1/2027091)
=2014*2*((1/+(1/2*3)+(1/3*4).....+(1/2013*2014))
=2014*2*(1/1-1/2+1/2-1/3+1/3-1/4+.....+1/2013-1/2014)
=2014*2*(1-1/2014)
=2*(2014*2013/2014)
=2*2013
=4026
Cuối cùng cũng giải được.