Ta đặt : \(A=1^2+2^2+3^2+...+12^2=625\)
\(\Rightarrow2A=2^2+4^2+6^2+...+24^2\)
\(\Leftrightarrow2A=1250\)
Vì \(1^2+2^2+3^2+......+12^2=625\)
\(\Rightarrow2^2+4^2+6^2+.......+24^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(3.2\right)^2+........+\left(12.2\right)^2\)
\(=1^2.2^2+2^2.2^2+3^2.2^2+.....+12^2.2^2\)
\(=1^2.4+2^2.4+3^2.4+......+12^2.4\)
\(=4.\left(1^2+2^2+3^2+.......+12^2\right)\)
\(=4.625=2500\)
22 + 42 + 62 + ... + 242
= ( 2.1 )2 + ( 2.2 )2 + ( 2.3 )2 + ... + ( 2.12 )2
= 22.12 + 22.22 + 22.32 + ... + 22.122
= 22( 12 + 22 + 32 + ... + 122 )
= 4.625 = 2500
\(2^2+4^2+6^2+...+24^2\)
\(=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.12\right)^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.12^2\)
\(=2^2\left(1^2+2^2+3^2+...+12^2\right)\)
\(=2^2.625=2500\)