a: \(\dfrac{P}{Q}=\dfrac{R}{S}\)
nên \(\dfrac{P}{Q}+1=\dfrac{R}{S}+1\)
hay \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b: P/Q=R/S=k
=>P=Qk; R=Sk
\(\dfrac{P}{Q-P}=\dfrac{Qk}{Q-Q\cdot k}=\dfrac{k}{1-k}\)
\(\dfrac{R}{S-R}=\dfrac{S\cdot k}{S-S\cdot k}=\dfrac{k}{1-k}\)
Do đó: \(\dfrac{P}{Q-P}=\dfrac{R}{S-R}\)