Đặt A(x)=(1+x+x2)15=a0+a1x+a2x2+.......+a30x30
Như vậy A(0)=(1+0+02)15=a0+a10+a202+.......+a30030=a0
Hay a0=(1+0+02)15=1
........LẠi đặt A(1).........Xomg thì tính vậy thôi
Đặt A(x)=(1+x+x2)15=a0+a1x+a2x2+.......+a30x30
Như vậy A(0)=(1+0+02)15=a0+a10+a202+.......+a30030=a0
Hay a0=(1+0+02)15=1
........LẠi đặt A(1).........Xomg thì tính vậy thôi
Cho biểu thức M= 2x/x+5+x+30-x^2/x^2-25+-1/x-5
a, rút gọn biểu thức
b, Tìm số nguyên x để M nhận giá trị nguyên
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\) với \(x\ne0;x\ne\pm1\)
a)Rút gọn A
b) Tính giá trị của b thức A với x thỏa mãn |x-1|=3
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên
cho \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
tính giá trị biểu thức \(P=x^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{2023}\)
Tìm giá trị nhỏ nhất: \(\dfrac{2\left|x-1\right|+11}{\left|x-1\right|+7}\)
Cho 2 phân thức \(\dfrac{2}{2x^{2^{ }}+7x-15}\),\(\dfrac{x}{x^2+3x-10}\). Chứng tỏ rằng có thể quy đồng mẫu thức của hai phân thức này với mẫu chung là 2x3 + 3x2 - 29x + 30
Cho x>0; y>0 và x+y=1
Tìm giá trị nhỏ nhất của biểu thức B=\(\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)\)
Thanks!!
Tìm x ϵ Z để : a) A = \(\dfrac{x^2-1}{x+2}\) có giá trị nguyên.
b) B = \(\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{2x^2-1}\) có giá trị nguyên.
c) C = \(\dfrac{2x-3}{3x-2}\) có giá trị nguyên.
d) D = \(\dfrac{x-1}{x^2+1}\) có giá trị nguyên.
1) Tìm giá trị lớn nhất của biểu thức :
M = \(\dfrac{x}{\left(x+2017\right)^2}\) với x > 0
2) Tìm giá trị nhỏ nhất của biểu thức :
M = \(5x^2+y^2\) biết x + y = 1