Bài 1:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+2017\geq 2\sqrt{x.2017}\Rightarrow (x+2017)^2\geq 8068x\)
\(\Rightarrow M=\frac{x}{(x+2017)^2}\leq \frac{x}{8068x}=\frac{1}{8068}\)
Vậy GTLN của \(M=\frac{1}{8068}\)
Dấu "=" xảy ra khi $x=2017$
Bài 2:
Thay $y=1-x$ vào biểu thức $M$ ta có:
\(M=5x^2+y^2=5x^2+(1-x)^2\)
\(=5x^2+(x^2-2x+1)=6x^2-2x+1\)
\(=6(x^2-\frac{1}{3}x+\frac{1}{36})+\frac{5}{6}\)
\(=6(x-\frac{1}{6})^2+\frac{5}{6}\geq 6.0+\frac{5}{6}=\frac{5}{6}\)
Vậy GTNN của $M$ bẳng $\frac{5}{6}$ khi \(x=\frac{1}{6}; y=\frac{5}{6}\)