Ta có \(\frac{6x+1}{2x-1}=\frac{3.\left(2x-1\right)+4}{2x-1}=3+\frac{4}{2x-1}\)\(\left(x\ne\frac{1}{2}\right)\)
Vì \(3\in Z\)nên để \(\frac{6x+1}{2x-1}\in Z\)thì \(\frac{4}{2x-1}\in Z\)
Hay \(2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm3\right\}\)
Vì \(2x-1\)là số lẻ nên \(2x-1\in\left\{\pm1;\pm3\right\}\)
Giải tiếp nha
\(A=\frac{6x+1}{2x-1}=\frac{6x-3+4}{2x-1}\)
\(=3+\frac{4}{2x-1}\)
Để biểu thức \(A=3+\frac{4}{2x-1}\)có giá trị nguyên thì : \(\frac{4}{2x-1}\)phải có giá trị nguyên
\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Do x là số nguyên , nên : \(x\in\left\{0;1\right\}\)