1.tìm x
a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)\)
b) \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)
2. CMR
a) \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b)\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c)\(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
giúp mik nha
chiều nay nộp r
2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.
1.
b. \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow4\left(x^2+5x-x-5\right)-\left(x^2+5x+2x+10\right)=3\left(x^2+2x-x-2\right)\)
\(\Leftrightarrow4x^2+20x-4x-20-x^2-5x-2x-10=3x^2+6x-3x-6\)
\(\Leftrightarrow4x^2+20x-4x-x^2-5x-2x-3x^2-6x+3x=20+10-6\)
\(\Leftrightarrow6x=24\)
\(\Leftrightarrow x=4\)
Vậy ....
\(a\text{)}.\: \left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow8x-5x^2+16-10x+4x^2-4x-8+2x^2-8=0\\ \Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)