Bài 2: Nhân đa thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thao Nguyen

1.tìm x

a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)\)

b) \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)

2. CMR

a) \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

b)\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

c)\(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

giúp mik nha

chiều nay nộp r

Trần Thiên Kim
9 tháng 7 2017 lúc 12:20

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

Trần Thiên Kim
9 tháng 7 2017 lúc 12:26

1.

b. \(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)=3\left(x-1\right)\left(x+2\right)\)

\(\Leftrightarrow4\left(x^2+5x-x-5\right)-\left(x^2+5x+2x+10\right)=3\left(x^2+2x-x-2\right)\)

\(\Leftrightarrow4x^2+20x-4x-20-x^2-5x-2x-10=3x^2+6x-3x-6\)

\(\Leftrightarrow4x^2+20x-4x-x^2-5x-2x-3x^2-6x+3x=20+10-6\)

\(\Leftrightarrow6x=24\)

\(\Leftrightarrow x=4\)

Vậy ....

๖ۣۜĐặng♥๖ۣۜQuý
9 tháng 7 2017 lúc 13:18

\(a\text{)}.\: \left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow8x-5x^2+16-10x+4x^2-4x-8+2x^2-8=0\\ \Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyen Thuy Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
My Trần Trà
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
anhquan
Xem chi tiết
Tuấn Anh Nguyễn
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Hoàng Hà Tiên
Xem chi tiết