1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)
dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0
1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)
dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0
a) Tìm GTNN của biểu thức: A= \(\frac{1}{2}\)+\(\sqrt{x}\)
b) Tìm GTLN của biểu thức: B= -2|0,(3)x + 4| +\(1\frac{2}{3}\)
Tìm GTLN của biểu thức A = |x-2013|+|x-2014|+|x-2015|
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
tìm GTNN của biểu thức A = |x-2013| + |x-2014| + | x-2015|
Tìm GTLN GTNN của \(A=\frac{1}{\sqrt{X}-1}\) và\(B=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
Tìm GTNN hoặc GTLN của biểu thức:
a) \(\frac{2\sqrt{x}+15}{\sqrt{x}+4}\)
b) \(\frac{x^2+2}{2x^2+3}\)
Tìm x biết :
a ) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\left(\frac{2}{3}x+\frac{3}{4}\right)< 0\)
b) \(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+2}{2014}\)
Tim GTNN của biểu thức A= |x-2013| + |x-2014| + |x-2015|
1,tìm GTNN
a, A=|2013-x| + |2014-x|
b, B=|x-2014| + |2015-x| + |x-2016|