Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
homaunamkhanh

1.Tìm giá trị nhỏ nhất của biểu thức A= \(\frac{\left(x+16\right)\left(x+9\right)}{x}\) với x>0

Đặng Ngọc Quỳnh
13 tháng 1 2021 lúc 21:11

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

Khách vãng lai đã xóa
Nobi Nobita
13 tháng 1 2021 lúc 21:31

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 1 2021 lúc 21:13

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Với x > 0, áp dụng bđt Cauchy ta có :

\(A=x+25+\frac{144}{x}\ge2\sqrt{x\cdot\frac{144}{x}}+25=24+25=49\)

Đẳng thức xảy ra khi x = 12

Vậy MinA = 49, đạt được khi x = 12

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sử Nữ
Xem chi tiết
Hà Minh Hiếu
Xem chi tiết
Đức Lộc
Xem chi tiết
肖赵战颖
Xem chi tiết
Bach Mai Phuong
Xem chi tiết
lưu viết vĩ
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết