1)
\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).
\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)
Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 } ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )
\(\Rightarrow n\in\) { -4; 0; 2; 6 }
Vậy \(n\in\) { -4; 0; 2; 6 }
2)
a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)
Quy đồng mẫu các phân số ta có:
\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)
\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\); \(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.
Vậy 3 phân số tiếp theo là \(\frac{2}{3}\); \(\frac{5}{6}\)và 1.
b)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).
c)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)