1.Tập các giá trị nguyên của x để biểu thức \(\sqrt{x-1}-\frac{x}{\sqrt{1-x}}\) xác định.
2.Tập nghiệm nguyên của bất phương trình: \(\sqrt{5x-2}\le4\).
*1/ Cho x,y,z là các số thực thoả mãn điều kiện \(\frac{3}{2}x^2+y^2+z^2+yz=1\)GTNN của biểu thức A=x+y+z
*2/ Xác định tập nghiệm của phương trình sau: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
*3/ Nghiệm nguyên nhỏ nhất của bất phương trình \(\sqrt{x+1}< x-3\)
*4/ Cho biểu thức \(P=\sqrt{\frac{\left(x^3-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)Tập hợp các giá trị của x để biểu thức P có giá trị nguyên là S={...}
*5/ Giải phương trình \(x^2+1=2\sqrt{2x-1}\)
Mọi người giải giúp dùm e ạ!!! Thanks! ^_^
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tập các giá trị nguyên của x để biểu thức:
\(\sqrt{x+1}-\frac{z}{\sqrt{1-2}}\) xác định là : ...
Tập hợp các giá trị nguyên của x đẻ biểu thức:\(A=\frac{1}{\sqrt{x-2}}+\frac{2}{\sqrt{6-x}}\) xác định là ?
Bài tập: Cho phương trình ẩn x: \(x^2-5x+m-2\). Tìm các giá trị của m để phương trình có 1 nghiệm dương phân biệt x1; x2 thỏa mãn hệ thức: \(2(\frac{1}{\sqrt{x1}}+\frac{1}{\sqrt{x2}})=3\)
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức:
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
1, Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P
2, Tìm x để P = 2
3, Tính giá trị của biểu thưc P tại x thỏa mãn \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
4. Tìm giá trị x để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
5. Tìm tất cả các giá trị nguyên của x để biểu thức P nhận giá trị nguyên
P=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) TÌm điều kiện xác định và rút gọn P
b) Tính giá trị biểu thức với x =\(\sqrt{14-6\sqrt{5}}\)
c) Tìm giá trị nhỏ nhất của bất phương trình
d) Tìm số chính phương x để P có giá trị nguyên