\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)
\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)
\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)
\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)
\(A=\left(\sqrt{5}-\sqrt{2}\right)^2-\frac{9}{\sqrt{10}-1}+\sqrt{90}\)\(B=\sqrt{2}\left(3\sqrt{2}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\)\(C=\left(\frac{5-\sqrt{5}}{\sqrt{5}-1}-\frac{\sqrt{5}+1}{5+\sqrt{5}}\right):\frac{\sqrt{5}+1}{\sqrt{5}}\)\(D=\frac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}:\frac{x+2\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)^3\left(x+y\right)}vớix,y>0\)
TÍNH HOẶC RÚT GỌN
rút gọn :
a.\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}vớix>=8\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}\)
c,\(\frac{\sqrt{x-2\sqrt{x+1}}}{x+2\sqrt{x+1}}\Rightarrow vớix>=0\)
d,\(\frac{x-1}{\sqrt{y-1}}\cdot\sqrt{\frac{\left(y-2\sqrt{y+1}\right)^2}{\left(x-1\right)^4}}\)
Rút gọn rồi tính giá trị của biểu thức
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\div\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}vớia=7,25;b=3,25\)
\(\frac{a-b}{\sqrt{a\times\left(a+2\times b\right)+b^2}}\div\sqrt{\frac{\left(a-b\right)^2}{a\times\left(a+b\right)}}vớia>b>0và\frac{a}{b}=\frac{9}{7}\)
\(\frac{x-1}{\sqrt{y}-1}\times\sqrt{\frac{\left(y-2\times\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}vớix=\frac{-1}{2};y=121\); giúp mk vs
Rút gọn biểu thức:
a, \(\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
b, \(\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{12+6\sqrt{3}}\)
c, \(4x-\sqrt{x^2-4x+4}\left(vớix\ge2\right)\)
d, \(\frac{x+6\sqrt{x}+9}{x+9}\)\(\left(vớix\ge0,x\ne9\right)\)
e, \(\frac{\sqrt{x^2+4x+4}}{x+2}\)\(\left(vớix\ne-2\right)\)
\(B=\left(\frac{a\sqrt{a}+1}{\sqrt{a}+1}\right):\left(a-1\right)+\frac{2a+\sqrt{a}+1}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}vớia>1\)
\(C=\left(\frac{X-1}{\sqrt{X}-1}+\frac{\sqrt{X^3}-1}{1-X}\right)-\left(\frac{\left(X-1\right)^2+\sqrt{X}}{\sqrt{X}+1}\right)vớiX>0,X\ne1\)
\(D=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}vớix>0,x\ne1\)
Rút gọn các biểu thức sau:
a)\(\frac{\sqrt{108x^3}}{\sqrt{12x}}\left(x>0\right)\)
b)\(\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}\left(x< 0;y\ne0\right)\)
c)\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
d) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge\right)\)
e)\(\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(y>0;x\ne1;y\ne1\right)\)
Cho biểu thức : \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{2\sqrt{x}-1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}}\right)vớix>0,x\ne1,x\ne4\)
a) Rút gọn A
b) Tính giá trị của A biết \(x=3-2\sqrt{2}\)
c) Tìm x để |A| > A
Rút gọn và tính giá trị biểu thức: a, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
b, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
c, \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
d,\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)
e,\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
rút gọn các biểu thức sau
a)\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)
b )\(\sqrt{5+6\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)