= \(\frac{99}{98}\)- \(\frac{98}{97}\)+ \(\frac{1}{9506}\)
= \(\frac{941094}{9506}\)- \(\frac{931588}{9506}\) + \(\frac{1}{9506}\)
= \(\frac{9506}{9506}\)+ \(\frac{1}{9506}\)
= 1 + \(\frac{1}{9506}\)
= \(\frac{1}{9506}\)
= \(\frac{99}{98}\)- \(\frac{98}{97}\)+ \(\frac{1}{9506}\)
= \(\frac{941094}{9506}\)- \(\frac{931588}{9506}\) + \(\frac{1}{9506}\)
= \(\frac{9506}{9506}\)+ \(\frac{1}{9506}\)
= 1 + \(\frac{1}{9506}\)
= \(\frac{1}{9506}\)
Tính: \(\frac{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}\)
thực hiện phép tính: 99/98 - 98/97 + 1/97x98
a)\(5+\frac{37}{36}+\frac{34}{35}+\frac{1}{35\cdot36}\)
b)\(\frac{99}{98}-\frac{98}{97}+\frac{1}{97\cdot98}\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}+100}=?\)
X +\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{97\times98}+\frac{1}{98\times99}\right)\)=10
Chứng minh: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right)\)chia hết cho 11
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
tính:\(\left(1-\frac{1}{97}\right)\times\left(1-\frac{1}{98}\right)\times...\times\left(1-\frac{1}{1000}\right)=\)
\(\left(1-\frac{1}{97}\right)\times\left(1-\frac{1}{98}\right)\times...\times\left(1-\frac{1}{1000}\right)=?\)