\(1+\frac{1}{1.3}=\frac{2^2}{1.3};1+\frac{1}{2.4}=\frac{3^2}{2.4}\)\(;...;1+\frac{1}{98.100}=\frac{99^2}{98.100};1+\frac{1}{98.100}=\frac{100^2}{99.101}\)
ta có:
\(\frac{2^2}{2.3}.\frac{3^2}{2.4}.....\frac{99^2}{98.100}.\frac{100^2}{99.101}\)\(=\frac{2^2.3^2.....99^2.100^2}{1.2.3^2.....99^2.100.101}\)\(=\frac{2^2.100^2}{2.100.101}=\frac{2.100}{101}=\frac{200}{101}\)
nếu làm ra tk thêm cho ko thì thôi
=4/1*3.9/2*4.16/3*5.....10000/99*101.
=2*2/1*3.3*3/2*4.4*4/3*5.....100*100/99/101.
=2*3*4*...*100/1*2*3*...*99.2*3*4*...*100/3*4*5*...*101.
=100*2/101=200/101.
k nha
chửi tiếp đi bình coi ai muốn tk nữa ko