\(\left(1+1\frac{1}{4}+1\frac{1}{2}+1\frac{3}{4}+2+2\frac{1}{4}+2\frac{1}{2}+2\frac{3}{4}+...+4\frac{3}{4}\right):23\)
Tính nhanh:\(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+\frac{\frac{1}{2}}{1+2+3+4}+...+\frac{\frac{1}{2}}{1+2+3+4+...+100}\)
cho dãy phân số: \(\frac{1}{1},\frac{1}{2},\frac{2}{1},\frac{1}{3},\frac{2}{2},\frac{3}{1},\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1},..\)hỏi phân số \(\frac{13}{25}\)là phân số thứ bao nhiêu trong dãy?
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}\frac{1}{1+2+3+4+5}=\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+4+.......+15}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}=?\)
1\(M=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}=\)
\(M=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}=........\)
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Tính nhanh:\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)