2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6
Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm
ahhii
Cho \(F\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(F\left(x_0\right)=0\Rightarrow F\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(G\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow G\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow G\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)