Ta có: a=3m+k và b=3n+k (m, n là thương của phép chia a, b cho 3; k là số dư => k=1, 2)
=> a*b-1=(3m+k)(3n+k)-1=9mn+3kn+3km+k2-1 = 3(3mn+kn+km)+(k2-1)
Do 3(3mn+kn+km) luôn chia hết cho 3
Xét k2-1: +/ Với k=1 => k2-1=1-1=0 => Chia hết cho 3
+/ Với k=2 => k2-1=4-1=3 => Chia hết cho 3
Vậy a*b-1=(3m+k)(3n+k)-1=3(3mn+kn+km)+(k2-1) Luôn chia hết cho 3