CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
1.CMR trong các số có 4 c/s # nhau lập đc bởi các c/s 1,2,3,4 ko có 2 số nào mà 1 số chia hết cho số còn lại 2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi STN n
chứng minh rằng trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
CM: Trong tất cả các số tự nhiên khác nhau có 7 chữ số được lập bởi các chữ số 1; 2; 3; 4; 5; 6; 7 không có hai số nào mà 1 số chia hết cho số còn lại.
từ các chữ số tự nhiên 1;2;3;4;5;6;7 lập tất cả các số tự nhiên có 7 chữ số khác nhau. cmr không tồn tại hai số nào được lập mà số này chia hết cho số kia.
(nhớ trình bày rõ nhé)
Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1 , 2, 3 ,4 ,5 , 6 ,7, không có 2 số nào mà một số chia hết cho số còn lại .
Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1 , 2, 3 ,4 ,5 , 6 ,7, không có 2 số nào mà một số chia hết cho số còn lại
1,từ các chữ số 1,2,3,4,5,6 người ta lập tất cả các số , mỗi số gồm các chữ số khác nhau .
CMR trong các số đc lập ko có số nào chia hết cho 11
2,cho a,b thuộc n . hỏi a.b.(a+b) có thể bằng 2019 hay ko?
3,
CMR:
a, 94260-35137 chhia hết cho 5
b, 995-984-973-962chia hết cho 5;2