Cho tam giác ABC vuông tại A. M Là điểm di động trên cạnh AB. Đường thẳng qua M vuông góc với BC tại D cắt AC tại N. Gọi E,F lần lượt là trung điểm của các đoạn thẳng BM và CN.
Chứng minh trung điểm I của EF thuộc một đường cố định.
Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
Cho tam giác ABC có góc A nhọn, nội tiếp đường tròn tâm O. Một điiểm I chuyển động trên cung BC không chứa A(I khác B,C). Đường thẳng vuông góc với IB tại I cắt AC tại E,đường thẳng vuông góc với IC tại I cắt AB tại F. Chứng minh EF đi qua 1 điểm cố định
Cho tam giác ABC nội tiếp đường tròn O (góc BAC >90o), một điểm I chuyển động trên cung BC không chứa điểm A ( I không trùng với B và C ). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định
Cho tam giác ABC nội tiếp đường tròn tâm O, một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
Cho tam giác ABC có H là trực tâm. Một đường thẳng đi qua H cắt AB,AC lần lượt tại P và Q sao cho HP=HQ. Qua điểm H vẽ một đường thẳng vuông góc với PQ cắt BC tại M
Cm: M trung điểm BC
toán bd 9
Cho đường tròn (O) và dây BC cố định không qua tâm, điểm A chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại M và N.
a) CM tứ giác BCEF nội tiếp và MN // FE.
b) Vẽ đường cao AD của tam giác ABC. CM H là tâm đường tròn nội tiếp tam giác DEF.
c) Đường thẳng qua A và vuông góc với EF luôn đi qua 1 điểm cố định.
Cho tam giác ABC vuông tại A. M di động trên cạnh AB . Đường thẳng qua M vuông góc với BC tại D và cắt AC tại N . E và F lần lượt là trung điểm BM và CN .cm trung điểm I của EF ko đổi
Tam giác ABC nhọn nội tiếp (O). BC cố định. Kẻ 2 đường cao BM, CN. Đường thẳng đi qua A và vuông với MN tại I cắt (O) tại D. Chứng minh khi A di chuyển trên (O) sao cho tam giác ABC nhọn thì AD đi qua một điểm cố định.