1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
\(A=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{-2xy+2}{xy+2}\)
\(=\frac{-2\left(xy+2\right)+6}{xy+2}=-2+\frac{6}{xy+2}\)
vì x,y>0 \(\Rightarrow xy\ge0\Rightarrow xy+2\ge2\Rightarrow\frac{6}{xy+2}\le\frac{6}{2}\)
\(\Rightarrow A\le-2+\frac{6}{2}=1\)
\(\Rightarrow maxA=1\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\Rightarrow maxA=1\)<=> x=0 và y=1 hoặc x=1 và y=0
Áp dụng bđt (a+b)2>=4ab ta có:
\(1^2=\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\frac{1}{4}\Rightarrow xy+2\le\frac{1}{4}+2=\frac{9}{4}\)
\(\Rightarrow A\ge-2+6:\frac{9}{4}=\frac{2}{3}\)
\(\Rightarrow minA=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)