1/ Tính tổng : \(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
2/ Tính: \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
Tính tổng
S=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
Tính hợp lý các tổng và tích sau:
1) \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2) \(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
3) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{300}}\)
M=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.....+\frac{10}{1400}\)
tính tổng M
1) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh rằng : S > 1
cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không tính tổng S, hãy chứng minh S không phải 1 số tự nhiên
cho \(A=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{99}+\frac{1}{100}\) . Chứng minh \(A>\frac{9}{20}\)
Cho\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh 1<S<2
Cho S\(\text{= }\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)Chứng minh rằng : 1< S < 2
cho s=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
chứng tỏ 1<s<2
=>s không phải số tự nhiên
giải : s>\(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
s<\(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)
vậy 1<s<2
=> s không phải là số N