\(A+B=\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)^5=81x^{20}y^{12}+32x^{10}z^{20}\)
Ta thấy \(81x^{20}y^{12}\ge0;32x^{10}z^{20}\ge0\) => \(81x^{20}y^{12}+32x^{10}z^{20}\ge0\)
Mà A + B = 0 \(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)=> x = 0 ; y và z bất kỳ hoặc y = z = 0 ; x bất kỳ