Câu 2: Chọn kết luận đúng:
A.\(\dfrac{-7}{15}\)=\(\dfrac{-2}{15}\) | B. \(\dfrac{7}{15}\)<\(\dfrac{-2}{15}\) | C. \(\dfrac{-7}{15}< \dfrac{-2}{15}\) |
|
15/1*2+15/2*3+15/3*4+ . . . +15/19*20
a, -15/16 + 9/16 + 11/16
b, 2/3 . (1,4) + 1,6 . 2/3 - 1,2 . 2/3
c, 3 và 2/15. 3/5+ 3 và 2/15. 2/5- 31/15
Tính tổng:(1+1+1)*1!+(2+2+1)*2!+...+(15+15+1)*15!
tìm a biết (15 -a)2 + 3(15-a)2 + 5(15-a)2+ ....151(15-a)2= 23104
B=\(\dfrac{7.6^{10}.2^{21}.3^6-2^{19}.6^{15}}{9.6^{15}.2^{13}-4.3^{15}.2^{26}}\)
A= 15/1.6+15/6.11 +15/11.16 +15/16.21 +15/21.26+ 15/26.31+15/31.36
CMR; A>2
\(\frac{1+15^4+15^8+...+15^{96}+15^{100}}{1+\frac{15}{2}+\frac{15}{4}+...+\frac{15}{100}+\frac{15}{102}}\)
Rút gọn:
\(B=\frac{1+15^4+15^8+...+15^{96}+15^{100}}{\left(1+15^4+15^8+...+15^{96}+15^{100}\right)+\left(15^2+15^6+...+15^{98}+15^{102}\right)}\)
B=\(\frac{1+15^4+15^8+...+15^{96}+15^{100}}{1+15^2+15^4+...+15^{98}+15^{100}+15^{102}}\)
Tính B