\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999+2004}\).
Có sai đề không vậy???
Sửa đề một chút :v
\(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{1999\cdot2004}\)
\(=\frac{1}{5}\left[\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{5}{1999\cdot2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{1999}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\left[\frac{1}{4}-\frac{1}{2004}\right]\)
\(=\frac{1}{5}\cdot\frac{125}{501}=\frac{25}{501}\)
Đặt A =1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004. Ta có:
A= 1/4 x 9 + 1/9 x 14 + 1/14 x 19 +...+ 1/1999 + 2004
5A= 5/4 x 9 + 5/9 x 14 + 5/14 x 19 +...+ 5/1999 + 2004
5A= 1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 +...+ 1/1999 - 1/2004
5A= 1/4 - 1/2004
A= (1/4 - 1/2004)/5