Tam giác ABC vuông tại A, AB.AC; AH, vuông góc với BC, HI vuông góc với AB, HG vuông góc với AC, IG cắt BC tại D, M là trung điểm của BC. CMR
a) AH=IG; AI.AB=AG.AC
b) DG.DI=DC.DB; AM vuông góc với DG
c) Cho N di động trên BC. Vẽ ra phía ngoài tam giác ABC hai tam giác đều BNE và CNF. Gọi P và Q là trung điểm của BF và CE. CMR tam giác PNQ đều
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Tính số đo của góc ABC khi góc ACB = 40độ.
b) Chứng minh tam giác AMB = EMC và AB // EC.
c) Từ C kẻ đường thẳng d song song với AE. Kẻ EK vuông góc đường thẳng d tại K . Chứng minh: góc KEC = BCA
Giup mình giải nhanh bài này với nha!
cho tam giác abc có góc a<90 độ trên nửa mp bờ ab có c vẽ ad vuông góc ab sao ab=ad,trên nửa mp bờ ac có b vẽ ae vuông góc ac sao cho ac=ae m là trung điểm của bc cmr am vuông góc de help me mai mình phải kiểm tra rùi pls
1) Cho tam giác ABC vuông ở A ,phân giác CD .Gọi H là hình chiếu của B trên đường thẳng CD.Trên CD lấy E sao cho H là trug điểm của DE.Gọi F là giao điểm của BH và CA.Chứng minh rằng :
a) Góc CEB =góc ADC và góc EBH = góc ACD
b) BE vuông góc BC
c)DF // BE
Bài 2 :Cho tam giác ABC có góc A = 120 độ ,phân giác AD.Kẻ DE vuông góc AB, DF vuông góc AC. Trên đoạn EB và FC lấy điểm I và K sao cho EI =FK .
a)C/m :tam giác DEF đều b) chứng minh tam giác DIK cân
c) Từ C kẻ đường thẳng // với AD cắt tia BA ở M . Chứng minh tam giác MAC đều. Tính AD biết CM=m ,CF=n .
1) Cho tam giác ABC vuông ở A ,phân giác CD .Gọi H là hình chiếu của B trên đường thẳng CD.Trên CD lấy E sao cho H là trug điểm của DE.Gọi F là giao điểm của BH và CA.Chứng minh rằng :
a) Góc CEB =góc ADC và góc EBH = góc ACD
b) BE vuông góc BC
c)DF // BE
Bài 2 :Cho tam giác ABC có góc A = 120 độ ,phân giác AD.Kẻ DE vuông góc AB, DF vuông góc AC. Trên đoạn EB và FC lấy điểm I và K sao cho EI =FK .
a)C/m :tam giác DEF đều b) chứng minh tam giác DIK cân
c) Từ C kẻ đường thẳng // với AD cắt tia BA ở M . Chứng minh tam giác MAC đều. Tính AD biết CM=m ,CF=n .
Cho tam giác ABC vuông tại A, K là trung điểm của BC. Qua K kẻ đường thẳng vuông góc với AK cắt đường thẳng AB;AC tại D;E
Gọi I là trung điểm của DE.
a)CMR AI vuông góc BC tại H
b)CMR DE .>= BC
Giúp mình với!
Cho tam giác ABC. Ở phía ngoài tam giác ABC vẽ 2 tam giác ABD và ACE có góc ABD = góc ACE = 90 độ; AB=AD, AC=CE. Kẻ DI và EK vuông góc vs BC( I, K thuộc BC). CMR: BI=CK.