Đặt \(S=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}.\)
\(\Rightarrow3S=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+...+\frac{3}{2010}+\frac{3}{6030}\)
\(=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\)
\(\Rightarrow3S-S=2S=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}\right)\)
\(2S=\frac{3}{4}-\frac{1}{6030}\)
\(\Rightarrow S=\frac{\frac{3}{4}-\frac{1}{6030}}{2}\)