Đặt \(A=1+3^1+3^2+...+3^{100}\)
Ta có \(3A=3.\left(1+3^1+3^2+...+3^{100}\right)\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A=1+3+3^2+3^3+...+3^{101}-1\)
\(\Rightarrow3A=A+3^{101}-1\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
Vậy \(1+3^1+3^2+...+3^{100}=\frac{3^{101}-1}{2}\)