a:Sửa đề: \(B=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(3B=-1+\frac13-\frac{1}{3^2}+\cdots+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=>\(3B+B=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{99}}-\frac{1}{3^{100}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(4B=-1-\frac{1}{3^{101}}=\frac{-3^{101}-1}{3^{101}}\)
=>\(B=\frac{-3^{101}-1}{4\cdot3^{101}}\)