giúp mình với nhé các bạn
\(A=\frac{1}{3}+\frac{1}{12}+....+\frac{1}{3072}\)
\(A\times4=\frac{4}{3}+\frac{1}{3}+...+\frac{1}{3072:4}\)
Lấy \(A\times4-A\)ta có:
\(A\times4-A=A\times3=\frac{4}{3}+\frac{1}{3}+...+\frac{1}{768}-\left(\frac{1}{3}+\frac{1}{12}+...+\frac{1}{3072}\right)\)
\(A\times3=\frac{4}{3}+\frac{1}{3}+...+\frac{1}{768}-\frac{1}{3}-\frac{1}{12}-...-\frac{1}{3072}\)
\(A\times3=\frac{4}{3}-\frac{1}{3072}\)
\(A\times3=\frac{1365}{1024}\)
\(A=\frac{1365}{1024}:3=\frac{455}{1024}\)