\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{399}{400}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{399}{400}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{399}{400}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{399}{400}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{399}{400}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{399}{400}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{200}\)
\(\frac{1}{x+1}=\frac{-299}{200}\)
\(x+1=\frac{-200}{299}\)
\(x=\frac{-499}{299}\)