Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{2^3}<\frac{1}{2.3}\)
\(\frac{1}{2^4}<\frac{1}{3.4}\)
...........
\(\frac{1}{2^n}<\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<1\)