ta có
\(1+\frac{1}{3}+\frac{1}{6}+..+\frac{2}{x\left(x+1\right)}=1+2\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+..+2\left(\frac{1}{x}-\frac{1}{x+1}\right)=2-\frac{2}{x+1}\)
Nên ta có
\(2-\frac{2}{x+1}=1+\frac{1989}{1991}\Leftrightarrow\frac{2}{x+1}=\frac{2}{1991}\Leftrightarrow x=1990\)