(1+1/3+1/5+1/7+...+1/99) : (1/1.99+1/3.97)+...+1/99.1)
tính : (1+1/3+1/5+1/7+...+1/99)/(1/1.99+1/3.97+1/5.95+...+1/97.3+1/99.1)
Tính nhanh:(1+1/3+1/5+...+1/99) : (1/1.99+1/3.97+...+1/99.1)
1+1/3+1/5+...+1/99 phần 1/1.99+1/3.97+1/5.95+...+1/99.1 = ?
Tìm giá trị biểu thức:
1+1/3+1/5+1/7+...1/99
1/1.99+1/3.97+1/5.95+...+1/99.1
Tính giá trị biểu thức sau:
A= [ 1+1/3+1/5+1/7+...+1/97+1/99 ] / [ 1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 ) ]
\(\frac{4+\frac{3}{5}+\frac{3}{7}+.....+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{99.1}}=???????\)
tính giá trị
Q=4+3/5+...+3/95+3/97+3/99 / 1/1.99+1/3.97+1/5.95+...+1/95.5+1/97.3+1/99.1
Tính 1 + 1/3 + 1/5 + ... + 1/99
----------------------------------------------------------
1/(1.99) + 1/(3.97) + 1/(5.95) + ... + 1/(99.1)