Chứng minh rằng:a) A1/2^2+1/3^2+1/4^2+...+1/2010^21b) B1/2+2/2^2+3/2^3+...+100/2^1002c) C1/3+2/3^2+3/3^3+...+100/3^1003/4d) D1/2^3+1/3^3+1/4^3+...+1/n^31/4 (n€ N;n hoặc 3)e) E1/3^3+1/4^3+1/5^3+...+1/n^31/12 (n€N; n hoặc 3)f) F2/1*4/3*6/5*...*200/19920g) G3/4+5/36+7/144+...+2n+1/n^2*(n+1)^21 (n nguyên dương)h) H1/2*(1/6+1/24+1/60+...+1/9240)57/462i) I1/31+1/32+1/33+...+1/20483j) J(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)2/5k) K1/2!+2/3!+3/4!+...+n-1/n! (n€N;n hoặc 2)l) L1/2!+5/3!+11/4!+...+n^2+n-...
Đọc tiếp
Chứng minh rằng:
a) A=1/2^2+1/3^2+1/4^2+...+1/2010^2<1
b) B=1/2+2/2^2+3/2^3+...+100/2^100<2
c) C=1/3+2/3^2+3/3^3+...+100/3^100<3/4
d) D=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n€ N;n> hoặc = 3)
e) E=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n€N; n> hoặc = 3)
f) F=2/1*4/3*6/5*...*200/199<20
g) G=3/4+5/36+7/144+...+2n+1/n^2*(n+1)^2<1 (n nguyên dương)
h) H=1/2*(1/6+1/24+1/60+...+1/9240)>57/462
i) I=1/31+1/32+1/33+...+1/2048>3
j) J=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
k) K=1/2!+2/3!+3/4!+...+n-1/n! (n€N;n> hoặc = 2)
l) L=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2
m) 1/6M=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4