1+(1+2)/2+(1+2+3)/3+...(1+...199)/199=
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3+...+199}{199}=?\)= ....................
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+199}{199}\)
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...........+\frac{1+2+3......+199}{199}\)
\(Tính:1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+.....+\frac{1+2+3+.....+199}{199}\)
Cho A= ½ + 1/3 + 2/4 +…+ 1/200 và B= 1/199+2/198+3/197+…+199/1
Cho dãy tính :
1 + \(\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3...+199}{199}=?\)
tính nhanh
a) a= ( 1-1/11) * ( 1-1/12) * ,,,,,, *( 1- 1/100)
b) b= 1+ 2/2*3+2/3*4+,,,,,+2/198*199+2/199*100
Tính A/B biết:
A=1/2+1/3+1/4+...+1/200
B=1/199+2/198+3/197+...+198/2+199/1