Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+..............+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+................+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
=\(\frac{49}{50}\)
ủng hô mình nha