\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}\\ =1-0-0-...-0-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
1/1.2 + 1/2.3 + .... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - ( 1/2 - 1/2 ) - ( 1/3 - 1/3 ) - ..... - ( 1/99 - 1/99 ) - 1/100
= 1 - 0 - 0 - .... - 1/100
= 1 - 1/100
= 99/100