a, \(\frac{x+1}{2x+6}=\frac{x+1}{2\left(x+3\right)}\)
b, \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c, \(\frac{x-x-2xy+x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x-2xy}{x+2y}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}\)
\(=\frac{\left(x-2xy\right)\left(2y-x\right)}{\left(x+2y\right)\left(2y-x\right)}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}=\frac{2xy-x^2+4xy^2+2x^2y}{\left(2y-x\right)\left(x+2y\right)}\)